Aviva Systems Biology office will be closed for Thanksgiving Holiday - November 22-23, 2018.
Please go here for more info.

Now Offering Over 102,157 Antibodies & 44,722 Antigens!

MAPK14 ELISA Kit (Mouse) (OKEH05001)

96 Wells
$569.00
In Stock
Gene Symbol:
MAPK14
Official Gene Full Name:
Mitogen-activated protein kinase 14
NCBI Gene Id:
26416
Alias Symbols:
Crk1, CRK1, Csbp1, Csbp2, CSBP2, MAPK 14, MAP kinase 14, MAP kinase p38 alpha, MGC102436, Mitogen-activated protein kinase 14, Mitogen-activated protein kinase p38 alpha, Mxi2, p38, p38a, p38alpha, p38 alpha, p38-alpha, p38MAPK, p38 MAPK, p38 MAP Kinase,
Description of Target:
Serine/threonine kinase which acts as an essential component of the MAP kinase signal transduction pathway. MAPK14 is one of the four p38 MAPKs which play an important role in the cascades of cellular responses evoked by extracellular stimuli such as proinflammatory cytokines or physical stress leading to direct activation of transcription factors. Accordingly, p38 MAPKs phosphorylate a broad range of proteins and it has been estimated that they may have approximately 200 to 300 substrates each. Some of the targets are downstream kinases which are activated through phosphorylation and further phosphorylate additional targets. RPS6KA5/MSK1 and RPS6KA4/MSK2 can directly phosphorylate and activate transcription factors such as CREB1, ATF1, the NF-kappa-B isoform RELA/NFKB3, STAT1 and STAT3, but can also phosphorylate histone H3 and the nucleosomal protein HMGN1. RPS6KA5/MSK1 and RPS6KA4/MSK2 play important roles in the rapid induction of immediate-early genes in response to stress or mitogenic stimuli, either by inducing chromatin remodeling or by recruiting the transcription machinery. On the other hand, two other kinase targets, MAPKAPK2/MK2 and MAPKAPK3/MK3, participate in the control of gene expression mostly at the post-transcriptional level, by phosphorylating ZFP36 (tristetraprolin) and ELAVL1, and by regulating EEF2K, which is important for the elongation of mRNA during translation. MKNK1/MNK1 and MKNK2/MNK2, two other kinases activated by p38 MAPKs, regulate protein synthesis by phosphorylating the initiation factor EIF4E2. MAPK14 interacts also with casein kinase II, leading to its activation through autophosphorylation and further phosphorylation of TP53/p53. In the cytoplasm, the p38 MAPK pathway is an important regulator of protein turnover. For example, CFLAR is an inhibitor of TNF-induced apoptosis whose proteasome-mediated degradation is regulated by p38 MAPK phosphorylation. In a similar way, MAPK14 phosphorylates the ubiquitin ligase SIAH2, regulating its activity towards EGLN3. MAPK14 may also inhibit the lysosomal degradation pathway of autophagy by interfering with the intracellular trafficking of the transmembrane protein ATG9. Another function of MAPK14 is to regulate the endocytosis of membrane receptors by different mechanisms that impinge on the small GTPase RAB5A. In addition, clathrin-mediated EGFR internalization induced by inflammatory cytokines and UV irradiation depends on MAPK14-mediated phosphorylation of EGFR itself as well as of RAB5A effectors. Ectodomain shedding of transmembrane proteins is regulated by p38 MAPKs as well. In response to inflammatory stimuli, p38 MAPKs phosphorylate the membrane-associated metalloprotease ADAM17. Such phosphorylation is required for ADAM17-mediated ectodomain shedding of TGF-alpha family ligands, which results in the activation of EGFR signaling and cell proliferation. Another p38 MAPK substrate is FGFR1. FGFR1 can be translocated from the extracellular space into the cytosol and nucleus of target cells, and regulates processes such as rRNA synthesis and cell growth. FGFR1 translocation requires p38 MAPK activation. In the nucleus, many transcription factors are phosphorylated and activated by p38 MAPKs in response to different stimuli. Classical examples include ATF1, ATF2, ATF6, ELK1, PTPRH, DDIT3, TP53/p53 and MEF2C and MEF2A. The p38 MAPKs are emerging as important modulators of gene expression by regulating chromatin modifiers and remodelers. The promoters of several genes involved in the inflammatory response, such as IL6, IL8 and IL12B, display a p38 MAPK-dependent enrichment of histone H3 phosphorylation on 'Ser-10' (H3S10ph) in LPS-stimulated myeloid cells. This phosphorylation enhances the accessibility of the cryptic NF-kappa-B-binding sites marking promoters for increased NF-kappa-B recruitment. Phosphorylates CDC25B and CDC25C which is required for binding to 14-3-3 proteins and leads to initiation of a G2 delay after ultraviolet radiation. Phosphorylates TIAR following DNA damage, releasing TIAR from GADD45A mRNA and preventing mRNA degradation. The p38 MAPKs may also have kinase-independent roles, which are thought to be due to the binding to targets in the absence of phosphorylation. Protein O-Glc-N-acylation catalyzed by the OGT is regulated by MAPK14, and, although OGT does not seem to be phosphorylated by MAPK14, their interaction increases upon MAPK14 activation induced by glucose deprivation. This interaction may regulate OGT activity by recruiting it to specific targets such as neurofilament H, stimulating its O-Glc-N-acylation. Required in mid-fetal development for the growth of embryo-derived blood vessels in the labyrinth layer of the placenta. Also plays an essential role in developmental and stress-induced erythropoiesis, through regulation of EPO gene expression. Phosphorylates S100A9 at 'Thr-113'.
Protein Name:
Mitogen-activated protein kinase 14
Swissprot Id:
P47811
Protein Accession #:
NP_001161980.1
Nucleotide Accession #:
NM_001168508.1
Species Reactivity:
Mouse
Sample Type:
Serum, plasma and other biological fluids
Sensitivity:
0.078 ng/mL
Kit Range:
0.156-10 ng/mL
Kit Reproducibility:
Three samples concentrations were measured in replicate within an assay plate and across replicate assays to assess Intra- and Mean Inter-Assay Precision.
Mean Intra-Assay Precision - <7.9%, n = 20
Mean Inter-Assay Precision - <9.5%, n = 20
Kit Duration:
~3 Hours
Kit Principle:
Aviva Systems Biology Mapk14 ELISA Kit (Mouse) (OKEH05001) is based on standard sandwich enzyme-linked immuno-sorbent assay technology. An antibody specific for Mapk14 has been pre-coated onto a 96-well plate (12 x 8 Well Strips) and blocked. Standards or test samples are added to the wells, incubated and removed. A biotinylated detector antibody specific for Mapk14 is added, incubated and followed by washing. Avidin-Peroxidase Conjugate is then added, incubated and unbound conjugate is washed away. An enzymatic reaction is produced through the addition of TMB substrate which is catalyzed by HRP generating a blue color product that changes to yellow after adding acidic stop solution. The density of yellow coloration read by absorbance at 450 nm is quantitatively proportional to the amount of sample Mapk14 captured in the well.
Kit Component:
ComponentAmount
MAPK14 Microplate96 Wells (12 x 8 Well strips)
MAPK14 Lyophilized Standard2
100X Biotinylated MAPK14 Detector Antibody1 x 120 uL
100X Avidin-HRP Conjugate1 x 120 uL
Sample Diluent1 x 20 mL
Detector Antibody Diluent1 x 12 mL
Conjugate Diluent1 x 12 mL
25X Wash Buffer1 x 30 mL
Stop Solution1 x 10 mL
TMB Substrate1 x 10 mL
Kit Recovery:
Mean recovery when spiking into Serum and Plasma = 92.8%
Kit Detection Method:
Colorimetric, OD450 nm
Tissue Tool:
Find tissues and cell lines supported by DNA array analysis to express MAPK14.
RNA Seq:
Find tissues and cell lines supported by RNA-seq analysis to express MAPK14.
Datasheets/Manuals:
Click here to download product manual. As variation between lots may occur, always reference the lot-specific manual received with each kit.
Reconstitution and Storage:
Store as indicated in product manual.
Assay Info:
Assay Methodology: Quantitative Sandwich ELISA
Protein Size (# AA):
360
Protocol:
Tips Information:

Tell us what you think about this item!

Write A Review
    Please, wait...